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Abstract Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the
properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While
on-going efforts seek to better root nuclear DFT in the theory of nuclear forces [see Duguet et al., this
issue], energy functionals remain semi-phenomenological constructions that depend on a set of parameters
adjusted to experimental data in finite nuclei. In this paper, we review recent efforts to quantify the related
uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter
estimation for inverse problems, statistical analysis of model uncertainties and Bayesian inference methods.
Illustrative examples are taken from the literature.

PACS. 21.60.Jz Nuclear Density Functional Theory and extensions – 21.10.-k Properties of nuclei; nuclear
energy levels – 02.30.Zz Inverse problems – 02.60.Pn Numerical optimization – 02.70.Uu Applications of
Monte Carlo methods

1 Introduction

Applications of nuclear science in energy production or
national security are based on nuclear data such as cross-
sections, energy levels, and lifetimes. In many cases of in-
terest, experimental measurements are not available, and
guidance from theory is indispensable. In the valley of sta-
bility, one still can employ simple models heavily tuned to
existing data. For example, the fission model implemented
in the GEF code uses about 50 parameters such as fission
barrier heights and level density parameter which are pa-
rameterized as a function of Z, N , or neutron incident
energy. The code also uses databases of binding energies
and shell corrections (in the ground state only). Based on
these parameters and data banks, qualitative arguments,
and a Monte Carlo sampling scheme, observables such as
fission probabilities, fission fragment yields, and neutron
multiplicities can be reproduced accurately in the actinide
region (with a few exceptions) [1]. While such an empiri-
cal approach fulfills some of the needs of data evaluators,
however, its predictive power beyond the region where the
model is fitted is null. Indeed, such models do not contain
any physics principle related to nucleons, their interaction,
and the quantum nature of the atomic nucleus.

Therefore, even if data-driven empirical models will al-
ways be helpful in the short term, one must try to root
data evaluation into more microscopic theories of nuclear
structure and reactions in order to gain confidence in the

reliability of evaluations. In heavy elements, density func-
tional theory is currently the only candidate for such a
microscopic approach to nuclear structure. In particular,
recent advances in high-performance computing have en-
abled large-scale calculations of nuclear properties at the
scale of the mass table [2,3]. Despite this progress, how-
ever, the accuracy and precision needed in data evalua-
tions represent a formidable challenge for nuclear density
functional theory (DFT). As an example, nuclear bind-
ing energies are computed within approximately 500 keV
in state-of-the-art DFT calculations [4,5]. Although this
represent a relative error of 0.05% or less for nuclei with
mass A > 100, it remains far from the sub-keV accuracy
that is demanded in, for example, criticality studies. In
order to make data evaluations based on microscopic in-
puts from DFT a viable alternative to simpler models, two
challenges must be addressed in the next few years.

First, DFT must be more firmly and rigorously con-
nected to the theory of nuclear forces as defined, for exam-
ple, by effective field theory [6]. One possibility is to derive
local energy functionals from chiral effective field poten-
tials by using the density matrix expansion [7,8]. Another
is to use, for example, many-body perturbation theory to
expand energy and norm kernels of ab initio approaches
in a form amenable to DFT treatment [9]; see also Duguet
et al. in this issue.

Second, irrespective of its mathematical form and phys-
ical origin, DFT kernels will always contain a phenome-
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nological component in the sense that they depend on a
small set of parameters that must be adjusted to data. In
addition to making the theory usable, adjusting these pa-
rameters will effectively provide an ad hoc mechanism to
capture missing correlations. However, this optimization
will induce an obvious dependence on the data and the
optimization process itself, in addition to the pre-existing
uncertainties related to the form of the functional and pos-
sible truncation errors in the numerical implementation.
As a result of these uncertainties, it is by no means guar-
anteed that the theory will be capable of converging to
the exact result. Therefore, rigorous methodology is es-
sential in order to identify, quantify and propagate model
uncertainties.

In this paper, we review the progress made in this area
over the past 10 years. In sect. 2, we recall the essential as-
pects of nuclear density functional theory; in particular we
discuss the distinction between the self-consistent mean-
field theory and the energy density functional (EDF) ap-
proach. In sect. 3, we look at DFT from a statistician’s
point of view: What are the parameters of the model? How
can they be determined? How can we quantify the statis-
tical uncertainties? We summarize the various tools used
to answer these questions. In sect. 4, we review the most
recent attempts to propagate statistical uncertainties in
model predictions using either covariance techniques or
Bayesian inference.

2 Nuclear Density Functional Theory

Density functional theory is a general approach for solving
the quantum many-body problem. Its most rigorous for-
mulation is in electronic structure theory, where it is based
on the existence theorem of Hohenberg and Kohn [10]. It
states that the energy of an interacting electron gas can
be written as a functional of the one-body local density
(of electrons), and the minimum of this functional gives
the exact ground-state of the system. Shortly thereafter,
this formal existence theorem was supplemented with the
Kohn-Sham scheme, which allows one to determine the ac-
tual density of electrons that minimizes the energy (if the
functional itself is known) by solving equations analogous
to Hartree equations [11]. Various extensions have been
proposed to handle exchange energy exactly (the Kohn-
Sham equations then are similar to Hartree-Fock equa-
tions), excited states, systems at finite temperature, and
to reproduce superfluid correlations (see, e.g., [12,13]).
These extensions rely on reformulating the Kohn-Sham
scheme with the full one-body density matrix (rather than
the local density), density operators, a combination of one-
and two-body densities, and so forth. Often other exten-
sions account for relativistic effects [14].

Implementations of DFT in nuclear physics are less
straightforward, since the nuclear Hamiltonian is not known,
in contrast with electronic structure theory. In addition,
nuclei are self-bound, and correlation effects are much
stronger than in electron systems [6]. Consequently, most
nuclear energy functionals used so far have been in fact de-
rived from the expectation value on the quasiparticle vac-

uum of effective nuclear forces used in the self-consistent
nuclear mean-field theory [15]. Therefore, they are formu-
lated in terms of the intrinsic one-body nonlocal density
matrix and nonlocal pairing tensor, which can break sym-
metries of realistic nuclear forces such as translational or
rotational invariance, parity, time-reversal invariance, and
particle number. This spontaneous symmetry breaking is
essential for introducing long-range correlations in the nu-
clear wavefunction [16,17]. Nuclear energy functionals are,
therefore, substantially different from their counterpart in
electronic DFT. This difference is reflected in the appel-
lation of energy density functional (EDF) formalism.

2.1 The Energy Density Functional Approach

In this section, we succinctly describe the basic ingredients
of the single-reference EDF (SR-EDF) approach with non-
relativistic empirical functionals such as derived from the
Skyrme or Gogny effective interactions. We refer to [6,17]
for discussions of more general frameworks such as mul-
tireference EDF and ab initio DFT. The starting point is a
set of single-particle states |i〉 that form a basis of the one-
body Hilbert space. The related creation/annihilation op-

erators are c†i and ci and define the configuration space
representation of the Fock space [18,16]. The coordinate
space representation is obtained by invoking the continu-
ous basis |x〉 ≡ |rστ〉 of the one-body Hilbert space, with
σ = ±1/2 the intrinsic spin projection and τ = ±1/2 the
isospin projection. The single-particle functions are then
〈x|i〉 = φ(x), and the corresponding creation/annihilation
operators are the field operators c†(x) and c(x). The parti-
cle vacuum of the Fock space is denoted by |0〉 and is char-
acterized by ∀i, ci|0〉 = 0, or, alternatively, ∀x, c(x)|0〉 =
0.

Because of the importance of pairing correlations in
low-energy nuclear structure [19], we introduce a canoni-
cal transformation between particle operators and quasi-
particle operators βµ, β

†
µ. This Bogoliubov-Valatin trans-

formation is [20,21,18,15]

βµ =
∑
m

[
U†µm cm + V †µm c

†
m

]
,

β†µ =
∑
m

[
V Tµm cm + UTµm c

†
m

]
.

(1)

In the SR-EDF approach, we introduce the reference state
|Φ〉 as a product wavefunction of quasiparticle operators
acting on the particle vacuum,

|Φ〉 =
∏
µ

βµ|0〉. (2)

Note that, by construction, the quasiparticle vacuum (2)
does not conserve the particle number.

The next step is to recall that for any given many-body
state |Ψ〉, the one-body density matrix ρ and two-body
pairing tensor κ are defined in configuration space as

ρij =
〈Ψ |c†jci|Ψ〉
〈Ψ |Ψ〉

, κij =
〈Ψ |cjci|Ψ〉
〈Ψ |Ψ〉

, (3)
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and the generalized density R as

R =

(
ρ κ
−κ∗ 1− ρ∗

)
. (4)

When |Ψ〉 is the quasiparticle vacuum (2), the correspond-
ing generalized density matrix verifies R2 = R and R† =
R [18]. In addition, the Wick theorem ensures that the ex-
pectation values of any operator on the quasiparticle vac-
uum can be expressed as functions of ρ, κ and κ∗ alone.
These three mathematical objects are thus the basic de-
grees of freedom of the theory. In particular, the energy is
then expressed as a functional E[ρ, κ, κ∗].

The actual density and pairing tensor of the nucleus
in its ground-state are determined by solving the Hartree-
Fock-Bogoliubov (HFB) equations, which are obtained by
applying the variational principle with respect to ρ, κ, and
κ∗ [18,16,15]. This leads to

[H,R] = 0, (5)

where H is the HFB matrix, Hij = ∂E/∂Rji. One-body
observables can then be computed as the trace of the rele-
vant operator and ρ. Because of the nonlinear nature of the
HFB equations, it is possible for the generalized density
to break various symmetries of nuclear forces. Conversely,
conserved symmetries can be used to label quasiparticle
states [22,23,24].

2.2 Pseudopotentials and Energy Functionals

Until recently, most applications of the nuclear EDF ap-
proach have been based on semi-empirical EDFs explicitly
derived from the expectation value of effective two-body
forces V̂eff. on the quasiparticle vacuum,

E[ρ, κ, κ∗] =
〈Φ|T̂ + V̂eff.|Φ〉
〈Φ|Φ〉

. (6)

In particular, the Skyrme effective force is a zero-range
two-body pseudopotential for which the EDF becomes a
functional of the local density only [25,26]. The Gogny
force has a finite range and gives a functional of the non-
local one-body density [27]; see, for example, [15,28] for
comprehensive reviews of applications of Skyrme and Gogny
EDFs. The empirical nature of both the Skyrme and Gogny
potentials is manifested by the presence of density depen-
dencies, which prohibits writing the potential in strict sec-
ond quantization form [29]. With the exception of a few re-
cent applications [30,31,32], these EDFs have been used in
the context of the self-consistent mean-field theory rather
than in a strict Kohn-Sham scheme.

In particular, many applications used the underlying
effective pseudopotential V̂eff. to implement beyond mean-
field techniques, where EDF reference states of the type
(2) serve as basis states to expand the unknown many-
body wavefunction, for example, in the generator coor-
dinate method, or to restore broken symmetries by us-
ing projection techniques [16,15]. A few years ago, how-
ever, standard beyond mean-field techniques were shown

to be invalid with density-dependent pseudopotentials [33,
34,35,36,37]. This result has stimulated efforts to remove
density dependencies, for example by using momentum-
dependent two-body pseudopotentials [38] or zero-range
two- and three-body pseudopotentials [39,40]. Since these
pseudopotentials are specifically designed to enable be-
yond mean-field techniques such as projection and config-
uration mixing, the central element of all these approaches
is the effective Hamiltonian T̂ + V̂eff. rather than the EDF
itself.

An alternative route is to implement a strict Kohn-
Sham approach, where the only degrees of freedom are
ρ, κ, and κ∗, the ground-state wave function is always a
quasiparticle vacuum of the form (2), and there is no men-

tion of some underlying effective potential V̂eff.. In such
an approach, the energy functional E[ρ, κ, κ∗] must be de-
signed so that it contains all relevant types of correlations.
Only two main families of such functionals have been pro-
posed in the literature: those proposed by Fayans and
collaborators [41,42,43], and the BPCM functionals from
the Barcelona-Paris-Cataña-Madrid collaboration [44,45].
The main difficulty of this strict Kohn-Sham scheme, which
is more in line with the spirit of DFT as encountered in
electronic structure theory, is to incorporate beyond mean-
field correlations accounting, for example, for large ampli-
tude collective motion, or symmetry restoration. Recent
work suggests that this could be achieved by introducing
new densities representing collective degrees of freedom
such as two-body or “collective” densities [46,47,48,49]
(which may lead to a generalization of the Kohn-Sham
equations) or by adding specific terms to the functional
designed to cancel symmetry-breaking [50,51].

2.3 Pairing Correlations

Sometimes overlooked is the fact that, according to the
HohenbergKohn theorem, the exact ground-state of the
system can in principle be expressed entirely as a func-
tional of the local one-body density matrix only. If this
theorem could be extended directly to nuclear function-
als of the intrinsic one-body density (see, e.g., [52,53]),
pairing correlations could — in principle — be produced
by an unique functional of ρ(r). In this idealized scenario,
there would be no need for quasiparticle operators, the Bo-
goliubov transformation, or the pairing tensor: the Kohn-
Sham scheme would be implemented directly with EDF
reference states taken as particle number conserving Slater
determinants.

In practice, of course, the form of this functional is
totally unknown. Until further notice, therefore, it seems
more reasonable to build on the success of the self-consistent
mean-field theory, to seek an explicit pairing term that is
a functional of the usual pairing tensor, and to work with
symmetry-breaking reference states of the type (2). Recall
that the pairing tensor is defined from the specific form
that the two-body correlation function takes in an HFB
vacuum [12,46]. If we denote ρ2(x1, x2, x

′
1, x
′
2) as the full,
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nonlocal, two-body density matrix, then we have

ρ2(x1, x2, x
′
1, x
′
2) = κ∗(x1, x2)κ(x′2, x

′
1)

− ρ(x′2, x1)ρ(x′1, x2) + ρ(x′1, x1)ρ(x′2, x2). (7)

Because of this property, the pairing tensor κ and its com-
plex conjugate κ∗ are, indeed, the two only degrees of free-
dom needed to account for pairing correlations at the HFB
level.

The pairing EDF can then be obtained by taking the

expectation value of a pseudopotential V̂
(pair)
eff. on the quasi-

particle vacuum, which will immediately introduce a de-
pendence on κ∗ and κ. This potential can be the same as
the one used in the particle-hole channel, which is typi-
cally the choice retained when working with the Gogny
force [27]. It can also have a different form, ranging from
simple seniority pairing forces [16] to density-dependent
zero-range pairing forces [54] to separable expansion of
finite-range, Gogny-like potentials [55,56]. Most of these
pairing forces, and hence the resulting pairing functionals,
are characterized by only a few parameters, and all lead
to EDFs that are functionals of κ∗ and κ only.

3 Density Functional Theory as a Model

Whether building the description of atomic nuclei on an
effective potential V̂eff. that defines both the mean-field
and beyond mean-field corrections, or an EDF E[ρ, κ, κ∗]
in a strict Kohn-Sham framework, theoretical predictions
will depend on a set of unknown parameters x correspond-
ing, respectively, to the parameters of the effective nuclear
force or the coupling constants of the EDF. Some of these
parameters may be constrained by exploring the connec-
tions with the theory of realistic nuclear forces or inves-
tigating ideal systems such as nuclear matter or neutron
drops [57,58]. In general, however, one will also have to
introduce experimental data in nuclei in order to set the
values of these parameters. This fit of low-energy coupling
constants to experimental data belongs to the class of in-
verse problems in statistics. In this section, we review some
of the techniques used in nuclear DFT to solve this prob-
lem. Most of our considerations are based on the SR-EDF
approach to nuclear structure but are easily extended to
the self-consistent mean-field approach.

3.1 Parameter Estimation

The problem of determining the parameters of the nuclear
EDF is easily posed: one needs only to choose a set of data
points, define an objective function such as a χ2 function,
and minimize the objective function with respect to the
parameters. We use the following notations: y denotes the
values of a set of experimental observables, with yti the
value of the ith observable of type t; x ≡ (x1, . . . , xnx)
represent the vector of the nx parameters of the model,
that is, the EDF coupling constants in our case; and η
collects the output of all model calculations. In our case,

ηti(x) is thus the output of an HFB calculation for the ith
observable of type t. Also, ε is the vector containing the
error between the actual calculation and the experimental
value. By definition, we thus have

yti = ηti(x) + εti, εti
indep∼ N(0, σt), ∀(t, i). (8)

Based on these notations, we minimize the weighted mean
squared deviation given by

χ2(x) =
1

nd − nx

T∑
t=1

nt∑
i=1

(
yti − ηti(x)

σt

)2

, (9)

where T is the total number of different data types, nt the
total number of points of type t, and nd the total number

of experimental points, nd =
∑T
t=1 nt. By convention, the

vector of parameters at the minimum of the χ2 is noted
x̂. Recall that χ2 � 1 implies a poor fit, where χ2 ≈ 1
indicates a good fit. This is the familiar “χ2 per degree of
freedom.” If all errors εti are independent and normally
distributed with mean 0, then the minimization of (9) is
equivalent to maximizing the likelihood function [59,60].
In addition, the χ2 is a random variable that follows a
genuine χ2 probability distribution function.

3.1.1 Experimental Dataset and Bias Estimation

Choosing which and how many data points to include in
the χ2 is the first important decision, and several strate-
gies have been followed. In nuclear mass models based
either on the Skyrme or Gogny force, all available experi-
mental information on atomic masses is used; see [5,4] and
references therein. It is supplemented by additional data
on, for example, fission barriers [61] or neutron matter [4].
The main concern for mass models is the risk of producing
a high-bias estimator of the data. In simpler terms, it is
by no means guaranteed that mass model parameteriza-
tions of Skyrme of Gogny forces are reliable for computing
observables that are not masses.

By contrast, most historical fits of the Skyrme and
Gogny forces were based on the smallest possible set of
data. These included nuclear matter properties, binding
energies, radii, and single-particle states; see [15,28,62] for
a discussion. In addition, data in finite nuclei was taken
almost exclusively in doubly-magic spherical nuclei. Two
of the most notable exceptions are the SkM* parameteri-
zation of the Skyrme force [63] and the D1S parameteriza-
tion of the Gogny force [64], which included information
on the fission barrier in 240Pu. The combination of small
dataset and spherical nuclei is also likely to lead to high-
bias estimators.

The recently proposed UNEDF parameterizations of
the Skyrme EDF represent an attempt to reduce the bias
of the fitting procedure by selecting a medium-sized sam-
ple of 100+ data points carefully selected in both spherical
and deformed nuclei; see fig. 1 for the specific case of the
UNEDF2 functional [30,31,32]. As a result, the ability of
UNEDF functionals to reproduce masses or fission barriers
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has degraded between UNEDF0 (3 datatypes, 108 points)
and UNEDF2 (5 data types, 130 points), while the pre-
dictive power on binding energies near closed shells and
on single-particle states increased. Note that until now, no
attempt has been made to rigorously quantify the bias of
EDF parameterizations.

UNEDF2

Figure 1. Experimental dataset used for optimizing the UN-
EDF2 Skyrme functional [32].

The pairing channel represents an additional difficulty
when determining the parameters of the nuclear EDF. In-
deed, very little data can effectively and unambiguously
constrain the pairing functional directly at the HFB level.
In practice, the odd-even staggering of binding energies is
most often used [65,66,67,68,69]. The UNEDF function-
als were the first ones where the fit of the pairing func-
tional was performed simultaneously with the fit of the
Skyrme EDF. As a result, there are built-in correlations
between the parameters of the Skyrme EDF and the two
parameters that control the pairing functional.

3.1.2 Optimization Algorithm

The minimization of the χ2 function in the context of nu-
clear DFT remains costly in computational resources. In
the example of the UNEDF functionals, 100+ full, axially-
deformed HFB calculations must be performed in order
to define the χ2. Some of the most popular parameteri-
zations of the nuclear EDF were published in the 1980s
and 1990s, where the cost of running a full HFB calcu-
lation was prohibitive in terms of χ2 minimization. Even
now, the optimization of HFB mass models, where the χ2

includes over 2,500 points, is still performed in spherical
symmetry by using empirical renormalizations [70].

In view of this computational cost, specifically designed
algorithms with a focus on efficiency and robustness are
especially valuable. We recall that derivatives ∂ηti(x)/∂xµ
are not available analytically for the minimization of the
χ2 (9). Of course they can always be computed numeri-
cally, but at a significant cost when nx is large. Therefore,

the optimization of the nuclear EDF is most efficiently
performed with derivative-free approaches.
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Figure 2. Performance (log-log scale) of three solvers (limited-
memory variable metric, POUNDERS Nelder-Mead) for non-
linear generalized χ2 problems with nx = 6, nd = 428; from
[71].

Although a rich literature on the subject exists, we
mention here only the POUNDERS algorithm developed in
the framework of the UNEDF collaboration [30,72,73,71].
POUNDERS is a derivative-free trust-region method based
on forming a local quadratic model of each component of
the χ2. The quadratic models are valid only in a small
region of the parameter space near the current point x,
but their aggregate approximation can be minimized ana-
lytically. The minimum x+ δx defines the next point of a
Newton-like procedure. As seen in fig. 2, the POUNDERS
algorithm converges quickly compared to the traditional
Nelder-Mead algorithm; most important, it gives a better
solution. POUNDERS has recently been applied to other
problems of interest in nuclear physics [74,75].

3.1.3 Choice of the Objective Function

Given a set of data points and a minimization algorithm,
some latitude remains in defining the weights, or stan-
dard deviations σt, associated with each data type. These
quantities represent the estimated error on the data type
t. They are in principle determined in such a way that
the χ2 objective function (9) approaches 1 at the min-
imum. Satisfying this condition may require readjusting
the weights during the minimization [77]. In practice, this
step has rarely been done in nuclear EDF optimization,
and the weights are most often kept constant (though data
type dependent). Results reported in [76] and listed in ta-
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Table 2. Rerun of POUNDERS on the UNEDF0 problem (nd = 108, nN = 72) from two different starting points. The scaled
difference columns represent the difference between the final value found and the original UNEDF0 parameterization, scaled by
its uncertainties σi; see table VIII in [30].

Starting from SLy4 Scaled Diff. Starting from SKM* Scaled Diff.
initial final initial final

ρc 0.159539 0.160486 -0.03954 0.160319 0.160435 -0.09106
ENM/A -15.9721 -16.0685 -0.2285 -16 -16.073 -0.3119
KNM 229.901 230 – 216.658 230 –
aNMsym 32.0043 31.3393 0.2604 30.0324 31.7221 0.3856
LNMsym 45.9618 54.2493 0.2290 45.7704 60.4725 0.3844

1/,M∗s 1.43955 0.9 – 1.26826 0.9 –

Cρ∆ρ0 -76.9962 -55.2344 0.01545 -68.2031 -55.7348 -0.2794

Cρ∆ρ1 15.6571 -64.1619 -0.1499 17.1094 -70.4274 -0.2599
V n0 -285.84 -170.796 -0.2003 -280 -170.788 -0.1966
V p0 -285.84 -197.782 0.4238 -280 -198.038 0.3474

Cρ∇J0 -92.25 -77.9436 0.4637 -97.5 -79.2915 0.06990

Cρ∇J1 -30.75 27.4519 -0.6171 -32.5 49.5737 0.1339
f(x̂) 1188.75 67.9034 24814.1 67.5738
nf 235 150

Table 1. Root-mean-square deviations for each observable in
the UNEDF1 optimization protocol compared for UNEDF1-
HFB for a few different values of the standard deviation σOES
(in MeV) of the OES data. All r.m.s. values are in MeV except
the ones for proton radii, which are in fm; from [76].

σOES 0.025 0.050 0.075 0.100
Deformed masses 0.944 0.776 2.596 0.806
Spherical masses 2.427 1.836 2.669 1.718

Proton radii 0.022 0.022 0.022 0.022
OES neutrons 0.012 0.051 0.065 0.080
OES protons 0.043 0.074 0.075 0.072

Fission isomer 0.809 0.558 0.535 0.530

ble 1 show that the impact of the weights on the result of
the optimization could be significant.

Minimizing the χ2 (9) requires initializing the opti-
mization algorithm with a vector x0. Ideally, the optimiza-
tion algorithm would be able to converge to the absolute
minimum of the objective function, given a set of con-
straints dictated by reality. In practice, it is nearly impos-
sible to guarantee such a result. To our knowledge, there is
only one example where the impact of the initial point on
the resulting parameterization was studied in detail [71].
Table 2 illustrates the robustness of the POUNDERS algo-
rithm; similar solutions to the optimization problem are
obtained when starting from the SLy4 or SkM* parame-
terization. The largest difference occurs for LNMsym (slope of
the symmetry energy in nuclear matter at saturation den-

sity) and Cρ∇J1 (isovector spin-orbit coupling constant),
which are poorly constrained by the dataset.

3.2 Statistical Uncertainties of Energy Densities

Irrespective of the form of the energy functional, the de-
gree of arbitrariness in defining the χ2 used to determine

the “best” parameters of the EDF clearly suggests possi-
bly large uncertainties in the resulting parameterizations.
Standard methods of probability and statistics can be used
to quantify some of these uncertainties. In this section, we
review only the techniques used to estimate statistical un-
certainties. Few studies of systematic uncertainties have
been conducted so far; see [76] for discussion. Numerical
errors are discussed separately in sect. 3.3. This separa-
tion is made for convenience only, since it is illusory to
think that all sources of uncertainties can be completely
disentangled.

3.2.1 Covariance Analysis

One of the most common quantities used for estimating
statistical uncertainties is the covariance matrix. The use
of covariance techniques in nuclear DFT is relatively re-
cent. Full regression analysis was first introduced in the
context of nuclear mass fits in [78]. The covariance ma-
trix was first mentioned and computed for Skyrme EDF
optimization in [62]. Since then, there have been many
applications of this technique to compute the standard
deviation of EDF parameters and propagate uncertainties
in model predictions; see sect. 4.

In the following, we denote CM the covariance matrix
of the parameters x of the model M that we are using
(EDF), formally,

(CM )ij = E [(xi − E(xi))(xj − E(xj))] , (10)

where E() refers to the average of a random variable; each
parameter xi is thus treated as a random variable. One
should distinguish CM from the “data” covariance matrix
CD. The latter notation will be used to refer to the covari-
ance matrix of the random variables ε associated with the
error between the model output η(x) and the experimen-
tal data y. All these misfits εti are often assumed to be in-
dependent, therefore CD is diagonal and (CD)ij = σ2

i δij .
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One also assumes that they follow a (multivariate) normal
distribution with mean 0, ε ∼ N (0,CD).

In the simple case of an unweighted, linear least-squares
optimization, where η(x) = Ax and σ2

i = 1, the inverse
of the covariance matrix CM can be computed as [59,60]

(C−1
M )ij(x) =

(
1

2

∂2χ2

∂xi∂xj

)−1

= 2
(
H−1

)
ij
, (11)

where H is the Hessian matrix of (nd − nx)χ2(x). In the
case of nuclear EDF optimization, the quality of the co-
variance matrix estimation is thus contingent on the linear
dependence of observables with model parameters within
the range of variation of interest. From the literature, one
finds that nuclear binding energies behave linearly across
a broad range of parameter space [76]; single-particle or-
bitals have a small degree of nonlinearity [79]; nonlinearity
becomes more pronounced in the variation of fission iso-
mer excitation energies [76]. While covariance techniques
have been often employed recently to obtain estimates of
statistical uncertainties on model predictions, see sect. 4,
the underlying hypothesis of linearity has rarely been in-
vestigated in detail.

The covariance matrix can also be used to get an es-
timate of confidence intervals/regions. Recall that if the
errors ε follow a multivariate normal distribution, then the
confidence interval at α percent for parameter i is defined
by the endpoints

x̂i ±
√

(CM )iitnd−nx,1−α2 , (12)

where tnd−nx,1−α2 is the 1− α
2 quantile of the (Student’s)

t distribution with nd − nx degrees of freedom [80,59,78,
81,82]. This was used, for example, in the assessment of
the UNEDF functionals [30,31,32]. The diagonal elements
of the covariance matrix define the standard deviations,
(CM )ii, of each parameter i.

3.2.2 Bayesian Techniques

Bayesian inference techniques have been used for many
years in the nuclear data community [83,84,85,86,87]. In
nuclear structure, this method has recently gained ground,
for example, to quantify uncertainties in chiral effective
potentials [88,89]. In DFT, Bayesian inference has been
used in electronic structure theory to evaluate uncertain-
ties induced by the fit of the exchange-correlation func-
tional in the generalized gradient approximation [90].

Following [83], one may describe Bayesian techniques
as an exercise of inductive inference when the probability
for an hypothesis A to be true is interpreted not strictly as
the number of observations of A over the total number of
outcomes, but rather as the degree of plausibility that A
is true. The “philosophical” interpretation is that the true
value of the model parameters x is described probabilis-
tically. Additional data further constrain the probability
distribution but never reduces it to a single, known value.

The Bayes theorem provides the mathematical foun-
dation for Bayesian techniques. In the case of continuous

random variables, it reads

p(x|y,M)dx =
P (y|x,M)P (x|M)dx∫

P (y|M)dx

. (13)

In practice, we seek the probability of the model M hav-
ing parameters x based on a set of observed data y. The
model is typically characterized by a number of features
that add to the resulting uncertainties. In the case of EDF
optimization, these features include the type of functional
(Skyrme, Gogny, or other), the treatment of pairing corre-
lations (HFB approximation, particle number projection),
and the numerical implementation. The probability distri-
bution p(x|y,M) is the posterior distribution. Note that
the posterior is computed within the model M : it does
not contain any information about the validity of said
model. In other words, suppose the posterior distribution
is sharply peaked around a given value x0: the fact that
x0 is the most likely parameter set does not mean (i) that
it is the correct one (since more data may change the dis-
tribution), and (ii) that the resulting model is the correct
one (since everything is model–dependent).

In eq. (13), P (y|x,M) is the probability that the model
produces the data given the parameters: it is the likelihood
function [59]. P (x|M) is the probability that the model
has parameters x irrespective of any data: it is the prior
distribution. For a uniform prior distribution, maximiz-
ing the posterior distribution is equivalent to maximizing
the likelihood. We remark in passing that both statistical
approaches give different results if one looks at the prob-
ability distribution of some new parameter g(x) that is a
function of the original parameters x [59].

Bayesian inference can also be used to compute an
estimate of the covariance matrix CM between the pa-
rameters. Assuming weak nonlinearities of the model pa-
rameters, that is, η(x) ∝ x, the likelihood function is ap-
proximately Gaussian with respect to x. If one assumes,
for simplicity, full ignorance about the prior distribution
(uniform distribution with independent parameters), then
the posterior covariance matrix is given by [91]

C̃
−1

M ≈ G
TC−1

D G, (14)

where

Gij(x) =
∂ηi
∂xj

(x) (15)

and CD is, as before, the covariance matrix associated
with the misfits between data and the predictions. Owing
to the (near) linearity of the model parameters, one can

easily find that C̃
−1

M = 2H as obtained from the stan-
dard covariance matrix. The advantage of the Bayesian
approach is the possiblity of including in the calculation
of the covariance matrix the effect of prior knowledge of
the distribution of model parameters; see sect. 3.2.3 in [91]
for details.

Posterior distributions are typically sampled by using
Markov chain Monte Carlo (MCMC) techniques [92], the
result being a (dependent) sequence of samples {x(1), . . . ,x(T )}.
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In practice, this sampling can be computationally chal-
lenging, since thousands or millions of evaluations of the
likelihood function, hence of the χ2 function, may be needed.
As mentioned in sect. 3.1.2, the χ2 functions used in nu-
clear EDF optimizations may typically involve between
100 and 2,500 HFB calculations or more, making the di-
rect sampling of the posterior distribution prohibitive. The
alternative is to estimate response surface functions in or-
der to emulate the behavior of the model response ηti(x)
at a much cheaper cost [93,94,95]. The parameters of these
response functions can also be incorporated in the statis-
tical setting x.
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Figure 3. (Color online) Univariate and bivariate marginal
estimates of the posterior distribution for the 12-dimensional
DFT parameter vector of the UNEDF1 parameterization. The
blue lines enclose an estimated 95% region for the posterior
distribution found when only the deformed masses from the
original UNEDF1 data are accounted for. The red dot corre-
sponds to the UNEDF1 values; see [76].

Until now, there have been only two examples of Baye-
sian applications in nuclear EDF optimization. In [96], the
backward forward Monte-Carlo method was applied to es-
timate uncertainties in Skyrme mass model parameters.
In [97], the full posterior distribution of the Skyrme EDF
corresponding to the UNEDF1 χ2 was computed by using
response functions based on Gaussian processes. The re-
sulting 12-dimensional multivariate distribution is shown
in fig. 3. The characteristics of the posterior distribution,
such as the calculated standard deviations of the parame-
ters, are similar to the results from the analysis based on
confidence interval given in [31].

3.3 Numerical Implementations

Implementing the DFT equation (e.g., the HFB equations
for the SR-EDF approach) in a computer program intro-
duces numerical errors. These errors are unavoidable be-
caues the density matrix and pairing tensor have an infi-
nite number of degrees of freedom. In this section, we focus

only on the problem of solving the HFB equations: in the
SR-EDF approach, these are the only equations needed. In
multireference EDF, the HFB equations also play a cen-
tral role because errors in the solutions will propagate to
the calculation of beyond mean-field corrections such as
in the GCM [15].

 10  20  30  40  50  60

Number of Oscillator Shells

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

E
rr
o
r 
(M

e
V
)

0.00.10.20.30.40.5

Mesh Size [fm]

Figure 4. Comparison between the pace of convergence of a
spherical DFT calculation in coordinate-space, (red squares),
and configuration space (HO basis), (black circles). Results
were obtained by setting both direct and exchange terms of
the Coulomb potentials to 0. The HO basis results are op-
timized with respect to the oscillator frequency. Coordinate
space calculations were performed with HFBRAD in a box of
20 fm [98], HO calculations with HOSPHE [8]; from [76].

One of the most popular approaches to solve the HFB
equations is to expand the HFB solutions on a basis of
known functions. In atomic nuclei, the eigenstates of the
harmonic oscillator (HO) are most often used, since they
are given analytically on spherical, cylindrical, and Carte-
sian coordinates. In addition, there is an exact separa-
tion between center of mass and relative motion. The
lower part of the nuclear mean-field is well approximated
by an HO. Several DFT solvers using HO basis expan-
sions have been published; see [99,100,22,101,102,103,50,
8,104,105]. In practice, all basis expansions are truncated.
Therefore, HFB solutions become dependent on the char-
acteristic parameters of the basis; in the case of the HO,
these are the basis frequencies ω = (ωx, ωy, ωz), number of
oscillator shells N , and total number of basis states (if the
basis is spherical, all frequencies are identical and there is
a one-to-one correspondence between number of shells and
number of states). This spurious dependence may induce
large errors, for example in nuclei with large elongations
or weakly bound systems. [106,76].

The HFB equations can also be solved by direct numer-
ical integration; see, for example, [107] for the HFB for-
malism in coordinate space. This has been done in spher-
ical and axial symmetry only [98,108]. For more complex
geometries, the computational cost of direct integration
becomes prohibitive; and hybrid strategies such as lattice
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discretization [109,110], finite element analysis [111,112]
and multi-resolution wavelet expansion [113] have been
investigated. While numerically significantly more precise
(see fig. 4 for a comparison between the pace of conver-
gence of the two methods), r-space-based techniques come
with a higher computational cost, in terms of processes,
memory, or disk space. Such approaches are also not ideal
for handling finite-range local forces or nonlocal forces.

Numerical errors inherent in DFT solvers are often
overlooked, even though they may play a non-negligible
role in the estimation of statistical uncertainties. For ex-
ample, the truncation error of HO expansions increases
with nuclear deformation, even when one tries to adjust
accordingly the geometry of the HO basis [114,106]. As a
result, the numerical error in the energy of, say, the fis-
sion isomer or the top of the fission barriers in actinide
nuclei is always going to be larger than the error in the
ground state. In fact, at very large deformations, the er-
ror of one-center basis expansions can reach a few MeV.
Apart from adopting empirical corrections based on aux-
iliary large-scale surveys of numerical errors [115], the so-
lution could be to generalize asymptotic formulas such as
proposed in the context of ab initio theory [116,117,118].
This problem, as well as the inclusion of these errors in
the calculation of uncertainties, remains open.

4 Uncertainty Propagation and Predictive
Power

One of the main advantages of using the statistical anal-
ysis techniques briefly presented in sect. 3 is to provide a
rigorous framework for propagating the quantified uncer-
tainties to predictions. These predictions can be the result
of running the same model on a different dataset; for ex-
ample, computing masses of exotic neutron-rich nuclei or
superheavy elements that have not been included in the
dataset during the optimization [97].

Most important, uncertainties in the EDF could also,
in principle, be propagated to cases where the EDF is only
one of several theoretical components, each with a few
sources of uncertainties. The calculation of low-lying ex-
cited states within the quasiparticle random phase approx-
imation (QRPA) is a straightforward example: it typically
contains approximation of its own (symmetry restrictions,
limited model space, etc.), but it is also strongly depen-
dent on the EDF.

Let us firmly reassert here that in both cases, propa-
gating uncertainties estimated using covariance of Baye-
sian techniques provides information only about the im-
pact of said uncertainties. The procedure does little to
provide ways to reduce them. In EDF optimization, nu-
merical errors due to basis or mesh truncation can easily
(at least in principle) be remedied. Statistical and a for-
tiori systematic uncertainties are much more difficult to
address without a detailed understanding of the nuclear
many-body problem.

Most uncertainty propagation reported in the litera-
ture was performed with covariance techniques. This sit-

uation implies that computed observables are linearly de-
pendent on model parameters, which is guaranteed only
locally near the optimal point. The computed value ηy(x)
of a single new observable y depends on the parameter-
ization of the EDF, and one can estimate its standard
deviation based on the parameter covariance matrix CM

[59,91]:

σ2
y =

∑
ij

Gyi(C
−1
M )ijGyj Gyi(x) =

∂ηy
∂xi

(x), (16)

If one now considers two new observables y and y′, pos-
sibly correlated, such as the neutron skin in 208Pb and
electric dipole (E1) polarizability αD in the same nucleus,
then the above formula should be generalized to

Cyy′ = GTC−1
M G (17)

to account for cross-correlations.
In the context of DFT applications, such covariance

analysis has been applied to compare statistical and sys-
tematic uncertainties of neutron skins [119]; to explore the
properties of ground-state properties of closed-shell nuclei
far from stability [120]; and to optimize EDF for nuclear
astrophysics [121,122,123].
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Figure 5. (Color online) Comparison between the fission bar-
rier predictions for 240Pu made with UNEDF1 (solid line), with
a refit of UNEDF1 including 17 more masses in neutron-rich
nuclei (dashed line), together with the 90% confidence interval
(shaded gray area) obtained from Bayesian analysis; from [97].

Bayesian techniques have been introduced only recently
in nuclear theory in general, and EDF optimization in par-
ticular. As a result, in only a couple of cases have these
methods been applied to the propagation of uncertain-
ties. In [96], the backward-forward Monte-Carlo algorithm
[124], which is a particular implementation of Bayesian in-
ference, was used to estimate the statistical uncertainties
in Skyrme mass models. In [76,97], the full posterior dis-
tribution of the UNEDF1 Skyrme EDF was determined
in a statistical setting by using Bayesian inference, with
uniform prior for x and a Gaussian process to emulate the
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response of the model η(x). The posterior distribution was
then sampled and used to estimate uncertainties on the fis-
sion barrier of 240Pu and the position of the two-neutron
dripline. The large uncertainties on fission barriers visi-
ble in fig. 5 emphasizes the lack of constraints on model
parameters, which could be caused by an inappropriate
choice of experimental data and/or too limited a model
(here Skyrme EDF).

In addition to the applications mentioned in the previ-
ous section, a few attempts have been made to propagate
statistical uncertainties from the nuclear EDF to the cal-
culation of observables that involved another model. For
example, quantifying the impact of neutron skins on the
electric dipole polarizability or on the weak-charge form
factor requires calculating the electric dipole response func-
tion, that is, RPA calculations [125,126,127].

5 Conclusions

Over the past decade, nuclear density functional theory
has positioned itself as a candidate for a global, compre-
hensive, accurate, and predictive theory of nuclear struc-
ture and reactions. Thanks to the (very recent) introduc-
tion in this field of standard statistical tools such as covari-
ance techniques or Bayesian inference, the statistical un-
certainties associated with the most common energy func-
tionals such as the Skyrme, Gogny, or relativistic EDF
have been computed rigorously. The propagation of these
uncertainties to model prediction in nuclei far from sta-
bility has often highlighted the need to substantially im-
prove the constraints on the parameters of the nuclear
EDF, irrespective of the origin of the functional itself.
Progress is thus needed in two complementary directions.
Better rooting of the nuclear EDF in the theory of nu-
clear forces will provide much needed constraints on the
expected predictive power of the theory. And, this effort
should go hand in hand with the generalization of sta-
tistical techniques to the problem of EDF optimization,
and the always-indispensable conversations with the ex-
perimental nuclear physics and data communities.

On a practical level, an exciting avenue of research
would be to extend the use of statistical techniques to
complex problems where the nuclear EDF is one of sev-
eral theoretical tools used. For example, properties of the
neutron spectrum in neutron-induced fission are currently
described within the Hauser-Feshbach approach to nu-
clear reactions. Such calculations require fission fragment
yields, total kinetic energies, and excitation energies of
the fragments. These quantities, in turn, are currently ob-
tained from either semi-phenomenological models based,
for example, on Langevin dynamics [128,129], or from
fully microscopic time-dependent generator coordinate method
calculations [130,131,132]. Either way, these dynamical
calculations depend on the potential energy surface of the
nucleus in some pre-defined collective space. For the mi-
croscopic approach, this potential energy surface depends
on which nuclear EDF is used, how the EDF has been
fitted, and what types of corrections are included [133,31,
134,135,136,137]. Ultimately, one would therefore wish to

propagate the uncertainties all the way through this chain
of “models,” from the nuclear EDF to the fission spec-
trum.

A related area of future research would be to define
a comprehensive framework to address uncertainties. In
this manuscript, we have insisted on the statistical uncer-
tainties, with only a short discussion of numerical errors.
However, we have also pointed out that all forms of un-
certainties are related to one another: numerical errors
are not a constant offset in DFT calculations, and thus
they propagate in a very nonlinear way into the calcu-
lation of the χ2, which will impact parameter optimiza-
tion and subsequent uncertainty analysis. The particular
mathematical formulation of the theory (SR-EDF versus
MR-EDF, HFB approximation only or HFB plus correc-
tions, etc.) also partially determines which observables can
be reliably computed by the model. For all others, the
statistical analysis may reveal that some parameters are
ill-constrained, not because the data is insufficient, but be-
cause the model is not sensitive to it. Moreover, one should
work toward incorporating experimental uncertainties. In
the case of the UNEDF2 parameterization, for example,
both fission isomer excitation energies and single-particle
states were included in the fit. Yet these quantities are
model-dependent, and their “experimental” error is rather
large. In the future, one should try to incorporate this in-
formation in the determination of EDF parameters.
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129. J. Randrup, P. Möller, and A. J. Sierk. Fission-fragment
mass distributions from strongly damped shape evolu-
tion. Phys. Rev. C, 84(3):034613, 2011.

130. H. Goutte, P. Casoli, and J. -F. Berger. Mass and kinetic
energy distributions of fission fragments using the time
dependent generator coordinate method. Nucl. Phys. A,
734:217, 2004.

131. W. Younes and D. Gogny. Collective dissipation from
saddle to scission in a microscopic approach. Technical
Report LLNL-TR-586694, Lawrence Livermore National
Laboratory (LLNL), Livermore, CA, 2012.

132. D. Regnier, M. Verrière, N. Dubray, and N. Schunck.
Felix-1.0: A finite element solver for the time-dependent
GCM+GOA equation. In preparation, 2015.

133. N. Nikolov, N. Schunck, W. Nazarewicz, M. Bender, and
J. Pei. Surface symmetry energy of nuclear energy density
functionals. Phys. Rev. C, 83(3):034305, 2011.

134. T. V. Nhan Hao, P. Quentin, and L. Bonneau. Parity
restoration in the highly truncated diagonalization ap-
proach: Application to the outer fission barrier of 240Pu.
Phys. Rev. C, 86(6):064307, 2012.

135. J. D. McDonnell, W. Nazarewicz, and J. A. Sheikh.
Third minima in thorium and uranium isotopes in a self-
consistent theory. Phys. Rev. C, 87(5):054327, 2013.

136. Samuel A. Giuliani and Luis M. Robledo. Fission prop-
erties of the BCPM functional. Phys. Rev. C, 88:054325,
2013.

137. N. Schunck, D. Duke, H. Carr, and A. Knoll. Description
of induced nuclear fission with Skyrme energy function-
als: Static potential energy surfaces and fission fragment
properties. Phys. Rev. C, 90(5):054305, 2014.


